A new characterization of ultraspherical polynomials
نویسنده
چکیده
We characterize the class of ultraspherical polynomials in between all symmetric orthogonal polynomials on [−1, 1] via the special form of the representation of the derivatives pn+1(x) by pk(x), k = 0, ..., n.
منابع مشابه
Characterizations of Generalized Hermite and Sieved Ultraspherical Polynomials
A new characterization of the generalized Hermite polynomials and of the orthogonal polynomials with respect to the measure |x|γ(1 − x2)1/2dx is derived which is based on a “reversing property” of the coefficients in the corresponding recurrence formulas and does not use the representation in terms of Laguerre and Jacobi polynomials. A similar characterization can be obtained for a generalizati...
متن کاملOn a Separation Theorem for the Zeros of the Ultraspherical Polynomials
1. It will be recalled that the ultraspherical polynomials are those which are orthogonal on the interval ( — 1, 1), corresponding to the weight function (1— x2)x~1/2, X>—1/2. In what follows X = 0 will also be excluded. The coefficients of these polynomials are functions of the parameter X appearing in the weight function, and the symbol P„(x, X), indicative of this fact, will be used to denot...
متن کاملNew Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملA second addition formula for continuous q-ultraspherical polynomials
This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there use...
متن کاملar X iv : q - a lg / 9 60 50 33 v 1 2 1 M ay 1 99 6 CRM - 2278 March 1995 q - Ultraspherical Polynomials for q a Root of Unity
Properties of the q-ultraspherical polynomials for q being a primitive root of unity are derived using a formalism of the soq(3) algebra. The orthogonality condition for these polynomials provides a new class of trigonometric identities representing discrete finite-dimensional analogs of q-beta integrals of Ramanujan. Mathematics Subject Classifications (1991). 17B37, 33D80
متن کامل